

CALTER • CALTER • WRAIGHT • WHITE
THIRD CANADIAN EDITION

TECHNICAL MATHEMATICS with CALCULUS

WileyPLUS with ORION

A personalized, adaptive learning experience.

WileyPLUS with ORION delivers easy-to-use analytics that help educators and students see strengths and weaknesses to give learners the best chance of succeeding in the course.

Chapter Performance by Objectives

E Correar

Identify which students are struggling early in the semester.

Educators assess the real-time engagement and performance of each student to inform teaching decisions. Students always know what they need to work on.

Help students organize their learning and get the practice they need.
With ORION's adaptive practice, students quickly understand what they know and don't know. They can then decide to study or practice based on their proficiency.

Measure outcomes to promote continuous improvement.
With visual reports, it's easy for both students and educators to gauge problem areas and act on what's most important.

Streamlined Learning Objectives

Easy to follow learning objectives help students make the best use of their time outside of class. Each learning objective is addressed by reading content, watching educational videos, and answering a variety of practice questions, so that no matter where students begin their work, the relevant resources and practice are readily accessible.

Review and Practice

Developing effective problem-solving skills requires practice, relevant feedback, and insightful examples with more opportunities for self-guided practice.

Narrated by the authors of the Canadian edition, Solution Walkthrough Videos provide easy-to-follow, step-by-step demonstrations of how to solve homework problems.

A new filtering capability in the assignment area allows instructors to customize assignments by using different filters including criteria related to technical applications, level of difficulty, and even learning objectives.

Review and practice opportunities in WileyPLUS include:

- Solution Walkthrough - Powerpoint lecture Videos
- Math Skills Review - Practice Quizzes
- Audio Glossary
- Test Bank
- Flashcards
- Instructors' Manual
- Crossword Puzzles

TECHNICAL MATHEMATICS WITH CALCULUS

TECHNICAL MATHEMATICS WITH CALCULUS

Vermont Technical College (Emeritus)
** MICHAEL A. CALTER, Ph.D \qquad Wesleyan University
\leftrightarrow PAUL D. WRAIGHT
Durham College
**SARAH A. WHITE \qquad

WILEY

Copyright © 2016 by John Wiley \& Sons Canada, Ltd.
All rights reserved. No part of this work covered by the copyrights herein may be reproduced or used in any form or by any means-graphic, electronic, or mechanical-without the prior written permission of the publisher.

Any request for photocopying, recording, taping, or inclusion in information storage and retrieval systems of any part of this book shall be directed to the Canadian copyright licensing agency, Access Copyright. For an Access Copyright licence, visit www.accesscopyright.ca or call toll-free, 1-800-893-5777.

Care has been taken to trace ownership of copyright material contained in this text. The publishers will gladly receive any information that will enable them to rectify any erroneous reference or credit line in subsequent editions.

Care has been taken to ensure that the web links recommended in this text were active and accessible at the time of publication. However, the publisher acknowledges that web addresses are subject to change.

Library and Archives Canada Cataloguing in Publication

Calter, Paul, author
Technical mathematics with calculus / Paul A. Calter, Michael A. Calter, Paul D. Wraight, Sarah A. White. - Third Canadian edition.
Includes bibliographical references and index. ISBN 978-1-118-96214-5 (bound)

1. Mathematics-Textbooks. 2. Calculus-Textbooks. I. Calter, Michael A., author II. Wraight, Paul D., 1960-, author III. White, Sarah A. (Sarah Alicia), author IV. Title.
TA330.C3435 $2015 \quad 510 \quad$ C2015-907272-7

Production Credits

EXECUTIVE EDITOR: Zoë Craig
VP AND DIRECTOR OF MARKET SOLUTIONS: Veronica Visentin
SENIOR MARKETING MANAGER: Patty Maher
EDITORIAL MANAGER: Karen Staudinger
DEVELOPMENTAL EDITOR: Andrea Grzybowski
MEDIA EDITOR: Luisa Begani
ASSISTANT EDITOR: Ashley Patterson
PRODUCTION AND MEDIA SPECIALIST: Meaghan MacDonald
DESIGN: Joanna Vieira
TYPESETTING: Aptara Inc.
COVER DESIGN: Joanna Vieira
COVER IMAGES: FangXiaNuo/Getty Images, Inc.; TommL/Getty Images, Inc., Morsa Images/Getty Images, Inc.; kokouu/Getty Images, Inc.
PRINTING AND BINDING: Quad/Graphics
The inside back cover will contain printing identification and country of origin if omitted from this page. In addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is correct.

Printed and bound in the United States of America
12345 QG 1918171615

Wiley

John Wiley \& Sons Canada, Ltd.
90 Eglinton Ave. E., Suite 300
Toronto, Ontario M4P 2Y3
Visit our website at: www.wiley.ca

About the Authors

THIRD CANADIAN EDITION

Paul Wraight is a professor of mathematics and electronics at Durham College in Oshawa, Ontario and has been teaching at the post-secondary level for over 15 years. He is a past president of the Ontario Colleges Mathematics Association and past chair of the Ontario Colleges Mathematics Council. Paul has also provided academic consultation in the development of several mathematics and technical publications. He is a passionate, down-to-earth educator who has been directly involved with several research projects dealing with retention and the at-risk student.

Sarah White has five years of teaching experience at Durham College in Oshawa, Ontario in the areas of science and engineering technology and general education. She also provides support and facilitation for the Centre for Academic and Faculty Enrichment at Durham College, in its annual program review and curriculum mapping process. Although she holds an Honours Bachelor of Science degree from the University of Waterloo, math doesn't come easy to Sarah. Reflecting on her own challenges with math has brought tremendous value to this edition as she uses her experiences both in and out of the classroom to focus on presenting content in a straightforward and easy to understand manner. Sarah is an enthusiastic and dedicated educator with a keen interest in educational research and pedagogical approaches to improve and enhance the student learning experience.

U.S. EDITION

Paul Calter is Professor Emeritus of Mathematics at Vermont Technical College and Visiting Scholar at Dartmouth College. A graduate of The Cooper Union, New York, he received his MS from Columbia University and an MFA from Norwich University. Professor Calter has taught technical mathematics for over 25 years. In 1987, he was the recipient of the Vermont State College Faculty Fellow Award.

Professor Calter is a member of the American Mathematical Association of Two Year Colleges, the Mathematical Association of America, the National Council of Teachers of Mathematics, the International Society for the Arts, Sciences, and Technology, the College Art Association, and the Author's Guild.

Professor Calter is the author of several other mathematics textbooks, among which are Schaum's Outline of Technical Mathematics, Practical Math Handbook for the Building Trades, Practical Math for Electricity and Electronics, Mathematics for Computer Technology, Introductory Algebra and Trigonometry, and Technical Calculus.

Michael Calter is Associate Professor at Wesleyan University. He received his BS from the University of Vermont. After receiving his Ph.D. from Harvard University, he completed a postdoctoral fellowship at the University of California at Irvine.

Michael has been working on his father's mathematics texts since 1983, when he completed a set of programs to accompany Technical Mathematics with Calculus.Since that time, he has become progressively more involved with his father's writing endeavours, culminating with becoming co-author on the second edition of Technical Calculus and the fourth edition of Technical Mathematics with Calculus.

Preface

The third Canadian edition of Technical Mathematics with Calculus has been significantly revised to incorporate features based on the most current and relevant pedagogical research in mathematics instruction for student success.

We continue to provide instructors with the tools they need to engage learning and teach content in a way that meets the needs of students. We present concepts in a straightforward, accessible manner meant to reduce common math anxiety by focusing on the essentials and providing a painless and easy to grasp learning experience. The text equips students with the necessary tools and problem-solving skills to be successful both in this course and in their chosen fields. The third Canadian edition of this well-respected text has been carefully developed to build upon the success of the second Canadian edition, while introducing a new, fresh approach as suggested by leading educational researchers, reviewers, colleagues, and students.

FEATURES OF THE CANADIAN EDITION:

- This text is presented predominantly in SI units, to complement the national and global use of these units. Where appropriate, there is a small retention of content based on the use of British Imperial units to allow students the opportunity to solve problems in either unitary system of designation.
- Canadian real-world applications appear throughout the text to illustrate the relevance and usefulness of technical mathematics outside of the classroom.
- The text reflects Canadian spelling conventions and terminology, and incorporates a Canadian geographical and cultural point of view.

NEW TO THIS EDITION:

Several areas of Technical Mathematics with Calculus, Third Canadian Edition have been thoroughly revised and new features have been added aimed at providing direct instruction to improve student understanding and success. These features break down essential mathematical components for reduced cognitive load and easier understanding. They also motivate students by linking the concepts presented in the pages of the book with their application in the world outside the classroom.

- Fully revised Chapter 1 with major revisions to chapters 2-10: The length of Chapter 1 has been significantly reduced from the second edition. Chapters $1-10$ have been revised with user-friendly, manageable, compact content and helpful summaries for quick reference. We have focused on direct, step-by-step instruction to address issues commonly experienced by today's students such as blind assumption, math anxiety, and numeracy challenges.
- Revised Chapter 13: Sections on exponents and radicals in this chapter have been revised to respond to feedback from instructors and students who have used previous editions of the text.
- Revised Chapters 27 and 30: Sections covering derivatives of algebraic functions and integration have been heavily revised to improve and accelerate student understanding and success in these foundational areas of calculus.
- Reduced anecdotal peripheral information will lighten the cognitive load and lower the level of distraction for today's student. This aligns with current research-based evidence for teaching and learning.
- Revised chapter introductions provide context for students by linking to and building upon material previously discussed in the textbook as well as answering the common questions "Why do I need to know this material and how is it important?"
- Section and chapter review questions have generally been reorganized and grouped according to the order in which the material is presented in the text. This will help students refer to the appropriate chapter section if they are experiencing difficulty with a review question.
- Additional tables summarize key concepts, definitions, and rules to reduce reading fatigue and page flipping. The tables also provide excellent quick reference tools for review and study.
- Complete walkouts of example solutions and step-by-step instruction showcase organizational problem-solving processes and focus student attention on key elements. This feature aligns with current STEM research, emphasizing direct instruction in order to improve math skills.
- Calculator Tip boxes and new calculator button graphics show students how calculations might look on their own calculators, helping with visualization and reducing calculator anxiety and frustration.
Inail - Math Rule icon appears in the margin next to mathematical rules that are important for students to remember.
1 Math Show Off boxes provide students with opportunities to further build confidence in content knowledge and show what they know to their peers.
Revised Common Error boxes emphasize some common mistakes or areas of difficulty experienced by students.
- Four-colour text design and new visual graphics help to illustrate mathematical relationships and concepts, enhancing visual presentation of material rather than relying entirely on written descriptions.

PEDAGOGICAL FEATURES:

In addition to the new features added for the third Canadian edition, the authors have built upon a foundation of pedagogical features from previous editions of the text.

- Learning objectives are listed at the beginning of each chapter and directly link to each section of the chapter, stating specifically what the student should be able to achieve upon completing
- The numerous examples form the backbone of the textbook. They are fully worked out and provide step-by-step instruction to help the student complete the exercises.
- The examples, and often the text itself, include discussions of many technical applications. They are included for classes that wish to cover these topics, and also enhance student engagement by showing that mathematics has real uses. The Index of Applications, which is printed on the endpapers, will help instructors and students locate specific applications.
- Problems with approximate solutions are also available in the text. These include not only expressions and equations with approximate constants, but also those that do not yield to many of the exact methods that are taught, and must be tackled with an approximate method.
- Also included are suggestions on how to estimate an answer in order for students to check their work. Suggestions for estimation are provided in the Chapter 3 material on word problems. Following that, many applications examples begin with an estimation step or end with a check, or simply an examination of the answer for reasonableness.

PROBLEM MATERIAL FEATURES:

- Thousands of exercises are included to give students the essential practice they need to learn mathematics. Exercises are given after each section, graded by difficulty and grouped by type, to allow practice in a particular area.
- Chapter review problems cover concepts from the chapter and are generally grouped according to the section in which they appear in the text.
- Answers to all odd-numbered problems are given in Answers to Selected Problems at the back of the book.
- Complete solutions to every problem are contained in the Instructor Solutions Manual.

INSTRUCTOR AND STUDENT RESOURCES:

- Instructor Solutions Manual containing worked out solutions to every problem in the text.
- Test bank offered in both Word and computerized formats
- PowerPoint slides designed to support classroom lectures
- All appendices are now available as online resources (www.wiley.com/go/caltercanada):
A. Summary of Facts and Formulas
B. Conversion Factors
C. Table of Integrals
D. Graphing Calculator and Computer Applications

WileyPLUS: An innovative, research-based online environment for effective teaching and learning.

WileyPLUS builds students' confidence because it takes the guesswork out of studying by providing students with a clear roadmap: what to do, how to do it, if they did it right. Students will take more initiative so you'll have greater impact on their achievement in the classroom and beyond.

This edition includes ORION, an adaptive, personalized learning experience that delivers easy-to-use analytics that allow instructors to see exactly where their students excel and where they need help. ORION helps students to learn by learning about them, and providing practice where they need it most. As a result, students will use their study time more effectively.

ACKNOWLEDGEMENTS:

Many thanks to our contributors for supplements and applications:

Alexei Gokhman, Humber College	
Ioulia Kim, Humber College	
Midori Kobayashi, Humber College	
Lisa MacKay, SAIT Polytechnic	
Richard Mitchell, Humber College	
Wendi Morrison, Sheridan College	
Natalia Pshenitsyna, Sheridan College	
Trevor Warren, Confederation College	
Derek Wellington, Lambton College	
We wish to thank all of the reviewers of the Canadian edition. They are:	
Claudia Calin, NAIT	Lisa MacKay, SAIT Polytechnic
Ermra Cami, Humber College	Doug Martin, Seneca College
Siobhan Carroll, Seneca College	Harry Matsugu, Humber College
Lauren Fuentes, Durham College	Richard Mitchell, Humber College
Amin Ghobeity, Sheridan College	Bruce Miller, Georgian College
Lynda Graham, Sheridan College	Atif Mohamed, Seneca College
Stuart Hood, Conestoga College	Kulsoom Mohammadi, Red River College
Marlene Hutscal, NAIT	Amy Phuong Hoang, Niagara College
Najam Khaja, Centennial College	Svitlana Pshenychna, Humber College
Midori Kobayashi, Humber College	Don Spencer, Saskatchewan Polytechnic
Frank Kovacic, Durham College	Frosina Stojanovska-Pocuca, Mohawk College
Stephen Krizan, SAIT Polytechnic	Alan Warren, Lambton College
Brian Lim, Humber College	Don Vander Klok, Lambton College

A textbook like this requires an entire team to see it through to completion.
I would like to thank the awesome people at Wiley again for this tremendous opportunity. To Susie Ponte for coming up with the original idea to have me write this book and supporting me through this edition. To Zoë Craig for her support and encouragement for this edition. Finally, to Andrea Grzybowski, taskmaster extraordinaire, for all your gentle reminders that helped to keep us on task.

Thanks to all my colleagues at Durham College, especially Lauren Fuentes and Tony Van Schyndel, for your continuing inspiration and support in this endeavour. To my writing partner and friend Sarah White, for your amazing support and offering the best feedback to me. We make an awesome team!

Again to my parents for all of your gifts including the logic, patience, and creative vision to see beauty in numbers and the ability to problem solve. To my wife Irene and daughter Alyssa (and Patrick) - thank you for all your support and understanding. I love you.

I dedicate this book to all college students to whom math doesn't come easy, to Sarah's son Andrew White, who has taught me so much during this edition, and to the memories of my dad, Doug, and my daughter Brianne.
Paul Wraight, Oshawa, ON

First and foremost, a very special thank you to my colleague and forever friend Paul Wraight for seeing the talent within me and having the confidence in my abilities to make our vision of this textbook a reality. Paul, you are an extraordinary educator and person and I don't know what I would ever do without you in my life. To the team at Wiley, for your faith in Paul to bring me onboard and for providing me with this incredible professional opportunity. To Zoë Craig and Andrea Grzybowski for keeping us on task, on track, and supporting our pedagogical approach. To my parents, Jean and Richard, and my husband Jeff for your ongoing support and love throughout this project and many other journeys. To all of my students, especially my children Madelaine and Andrew: you always inspire me to see the world (including math) through your eyes. This book is dedicated to you.

Sarah White, Oshawa, ON

Foreword

As Associate Director of the College Mathematics Project (CMP) and the College Student Achievement Project (CSAP), I have had the pleasure of working with Paul Wraight over the past seven years. In his role as President of the Ontario Colleges Mathematics Association (OCMA), Paul has contributed significantly to the success of both the CMP and the CSAP, projects that have involved all 24 of Ontario's Colleges of Applied Arts \& Technology as well as its 72 school boards. The research for these projects has included analysis of the mathematics achievement of students in their first year of college and deliberations over ways to improve student success.

The pedagogical approach of Technical Mathematics with Calculus, Third Canadian Edition is fully aligned with the recommendations of the CMP and the CSAP, specifically those highlighting the need to increase basic numeracy skills of college students. The author team has been careful to incorporate techniques and features throughout this text to enhance student learning and retention. They accomplish this by focusing the student's attention on key elements and presenting the content in a visually appealing, user friendly, manageable, and compact manner. They have integrated the latest research on STEM teaching and learning with an emphasis on direct instruction to improve math skills.

During our most recent CSAP forum, former college president and deputy minister Dr. Charles Pascal pointed out that, "the best teachers are not 'brainiacs;' they are people who love their subject matter, who had to break it down for themselves, and who want to build a bridge for those whose learning success is their passion." This author team shares this passion for learning success and their text builds bridges for students in a warm and inviting manner. Overall, this book shares our common goal of helping today's students overcome their numeracy skills challenges and advances our common vision of increasing success for all students.

Graham Orpwood, PhD
Professor Emeritus, York University

Contents

1 Numerical Computation 1
1-1 The Number Types 1
1-2 Numerical Operations 7
1-3 Order of Operations 17
1-4 Scientific and Engineering Notation 20
1-5 Units of Measurement 23
1-6 Substituting into Equations and Formulas 29
1-7 Percentage 31
Chapter 1 Review Problems 38
2 Introduction to Algebra 40
2-1 Algebraic Expressions 40
2-2 Addition and Subtraction of Algebraic Expressions 45
2-3 Integral Exponents 49
2-4 Multiplication of Algebraic Expressions 56
2-5 Division of Algebraic Expressions 62
Chapter 2 Review Problems 67
3 Simple Equations and Word Problems 70
3-1 Solving First-Degree Equations 70
3-2 Solving Word Problems 77
3-3 Financial Problems 83
3-4 Mixture Problems 84
3-5 Statics Problems 88
Chapter 3 Review Problems 91
4 Functions 93
4-1 Functions and Relations 94
4-2 Functional Notation 101
4-3 Composite Functions and Inverse Functions 107Chapter 4 Review Problems 111
5 Graphs 112
5-1 Plotting Rectangular Coordinates 112
5-2 Graphing a Function Using Ordered Pairs 115
5-3 Graphing a Linear Function 117
5-4 Graphing Empirical Data, Formulas, and Parametric Equations 120
5-5 Solving Equations with Graphs 122
Chapter 5 Review Problems 124
6 Geometry 125
6-1 Straight Lines and Angles 125
6-2 Polygons 130
6-3 Triangles 131
6-4 Quadrilaterals 137
6-5 Circles 139
6-6 Volumes and Areas of Solids 143
Chapter 6 Review Problems 146
7 Right Triangles and Vectors 147
7-1 Angles and Their Measures 147
7-2 The Trigonometric Functions 151
7-3 Finding the Angle When the Trigonometric Function Is Given 155
7-4 Solution of Right Triangles 156
7-5 Applications of the Right Triangle 160
7-6 Vectors 164
7-7 Applications of Vectors 168
Chapter 7 Review Problems 171
8 Factors and Factoring 173
8-1 Common Factors 173
8-2 Difference of Two Squares 175
8-3 Factoring Quadratic Trinomials 178
8-4 Factoring by Grouping 182
8-5 The General Quadratic Trinomial 182
8-6 The Perfect Square Trinomial 185
8-7 Sum or Difference of Two Cubes 187
Chapter 8 Review Problems 188
9 Fractions and Fractional Equations 190
9-1 Simplification of Fractions 190
9-2 Multiplication and Division of Fractions 195
9-3 Addition and Subtraction of Fractions 197
9-4 Complex Fractions 201
9-5 Fractional Equations 203
9-6 Word Problems Leading to Fractional Equations 205
9-7 Literal Equations and Formula Manipulation 210
Chapter 9 Review Problems 214
10 Systems of Linear Equations 216
10-1 Systems of Two Linear Equations 216
10-2 Other Systems of Equations 223
10-3 Word Problems with Two Unknowns 227
10-4 Systems of Three Linear Equations 234
Chapter 10 Review Problems 239
11 Determinants 241
11-1 Second-Order Determinants 241
11-2 Third-Order Determinants 246
11-3 Higher-Order Determinants 253
Chapter 11 Review Problems 258
12 Matrices 260
12-1 Definitions 260
12-2 Operations with Matrices 265
12-3 The Inverse of a Matrix 276
12-4 Solving a System of Linear Equations by Matrix Inversion 279
Chapter 12 Review Problems 282
13 Exponents and Radicals 284
13-1 Integral Exponents 284
13-2 Simplification of Radicals 288
13-3 Operations with Radicals 293
13-4 Radical Equations 298
Chapter 13 Review Problems 301
14 Quadratic Equations302
14-1 Solving Quadratics by Factoring 302
14-2 Solving Quadratics by Completing the Square 308
14-3 Solving Quadratics by Formula 309
14-4 Applications and Word Problems 312
14-5 Graphing the Quadratic Function 314
14-6 Equations of Quadratic Type 316
14-7 Simple Equations of Higher Degree 318
14-8 Systems of Quadratic Equations 319
Chapter 14 Review Problems 322
15 Oblique Triangles and Vectors 323
15-1 Trigonometric Functions of Any Angle 323
15-2 Law of Sines 331
15-3 Law of Cosines 335
15-4 Applications 339
15-5 Addition of Vectors 342
Chapter 15 Review Problems 346
16 Radian Measure, Arc Length, and Circular Motion 347
16-1 Radian Measure 347
16-2 Arc Length 354
16-3 Uniform Circular Motion 357
Chapter 16 Review Problems 359
17 Graphs of the Trigonometric Functions 360
17-1 The Sine Curve 360
17-2 The General Sine Wave, $y=a \sin (b x+c)$ 364
17-3 Quick Sketching of the Sine Curve 370
17-4 Graphs of More Trigonometric Functions 372
17-5 The Sine Wave as a Function of Time 377
17-6 Polar Coordinates 384
17-7 Graphing Parametric Equations 388
Chapter 17 Review Problems 390
18 Trigonometric Identities and Equations 392
18-1 Fundamental Identities 392
18-2 Sum or Difference of Two Angles 397
18-3 Functions of Double Angles 402
18-4 Functions of Half-Angles 404
18-5 Trigonometric Equations 407
18-6 Inverse Trigonometric Functions 413
Chapter 18 Review Problems 415
19 Ratio, Proportion, and Variation 417
19-1 Ratio and Proportion 417
19-2 Direct Variation 421
19-3 The Power Function 424
19-4 Inverse Variation 431
19-5 Functions of More Than One Variable 434
Chapter 19 Review Problems 437
20 Exponential and Logarithmic Functions 440
20-1 The Exponential Function 440
20-2 Exponential Growth and Decay 444
20-3 Logarithms 452
20-4 Properties of Logarithms 456
20-5 Exponential Equations 462
20-6 Logarithmic Equations 468
20-7 Graphs on Logarithmic and Semilogarithmic Paper 471
Chapter 20 Review Problems 477
21 Complex Numbers 479
21-1 Complex Numbers in Rectangular Form 480
21-2 Graphing Complex Numbers 485
21-3 Complex Numbers in Trigonometric and Polar Forms 485
21-4 Complex Numbers in Exponential Form 490
21-5 Vector Operations Using Complex Numbers 493
21-6 Alternating Current Applications 495
Chapter 21 Review Problems 500
22 Analytic Geometry 501
22-1 The Straight Line 502
22-2 The Circle 513
22-3 The Parabola 519
22-4 The Ellipse 526
22-5 The Hyperbola 534
Chapter 22 Review Problems 542
23 Binary, Hexadecimal, Octal, and BCD Numbers 544
23-1 The Binary Number System 544
23-2 The Hexadecimal Number System 550
23-3 The Octal Number System 553
23-4 BCD Codes 554
Chapter 23 Review Problems 555
24 Inequalities and Linear Programming 557
24-1 Definitions 557
24-2 Solving Inequalities 561
24-3 Linear Programming 568
Chapter 24 Review Problems 572
25 Sequences, Series, and the Binomial Theorem 573
25-1 Sequences and Series 573
25-2 Arithmetic Progressions 578
25-3 Geometric Progressions 584
25-4 Infinite Geometric Progressions 587
25-5 The Binomial Theorem 591
Chapter 25 Review Problems 599
26 Introduction to Statistics and Probability 601
26-1 Definitions and Terminology 601
26-2 Frequency Distributions 605
26-3 Numerical Description of Data 610
26-4 Introduction to Probability 619
26-5 The Normal Curve 627
26-6 Standard Errors 631
26-7 Process Control 636
26-8 Regression 644
Chapter 26 Review Problems 648
27 Derivatives of Algebraic Functions 651
27-1 Limits 651
27-2 The Derivative 658
27-3 Rules for Derivatives 666
27-4 Derivative of a Function Raised to a Power 669
27-5 Derivatives of Products and Quotients 672
27-6 Derivatives of Implicit Relations 676
27-7 Higher-Order Derivatives 680
Chapter 27 Review Problems 680
28 Graphical Applications of the Derivative 682
28-1 Tangents and Normals 682
28-2 Maximum, Minimum, and Inflection Points 685
28-3 Sketching, Verifying, and Interpreting Graphs 693
28-4 Approximate Solution of Equations by Newton's Method 696
Chapter 28 Review Problems 698
29 Applied Applications of the Derivative 699
29-1 Rate of Change 699
29-2 Motion of a Point 703
29-3 Related Rates 709
29-4 Optimization 714
Chapter 29 Review Problems 722
30 Integration 724
30-1 The Indefinite Integral 724
30-2 Rules for Finding Integrals 731
30-3 Constant of Integration 736
30-4 The Definite Integral 738
30-5 Approximate Area Under a Curve 740
30-6 Exact Area Under a Curve 745
Chapter 30 Review Problems 747
31 Applications of the Integral 748
31-1 Applications to Motion 748
31-2 Applications to Electric Circuits 752
31-3 Finding Areas by Means of the Definite Integral 754
31-4 Volumes by Integration 762
Chapter 31 Review Problems 767
32 More Applications of the Integral 769
32-1 Length of Arc 769
32-2 Area of Surface of Revolution 772
32-3 Centroids 774
32-4 Fluid Pressure 781
32-5 Work 783
32-6 Moment of Inertia 786
Chapter 32 Review Problems 791
33 Derivatives of Trigonometric, Logarithmic, and Exponential Functions 792
33-1 Derivatives of the Sine and Cosine Functions 792
33-2 Derivatives of the Tangent, Cotangent, Secant, and Cosecant Functions 798
33-3 Derivatives of the Inverse Trigonometric Functions 802
33-4 Derivatives of Logarithmic Functions 804
33-5 Derivatives of the Exponential Function 809
Chapter 33 Review Problems 813
34 Methods of Integration 814
34-1 Integrals of Exponential and Logarithmic Functions 814
34-2 Integrals of the Trigonometric Functions 817
34-3 Average and Root Mean Square Values 819
34-4 Integration by Parts 821
34-5 Integrating Rational Fractions 824
34-6 Integrating by Algebraic Substitution 830
34-7 Integrating by Trigonometric Substitution 833
34-8 Improper Integrals 836
34-9 Approximate Value of a Definite Integral 838
Chapter 34 Review Problems 844
35 Differential Equations 845
35-1 Definitions 845
35-2 Graphical and Numerical Solution of Differential Equations 848
35-3 First-Order Differential Equation, Variables Separable 851
35-4 Exact First-Order Differential Equations 854
35-5 First-Order Homogeneous Differential Equations 856
35-6 First-Order Linear Differential Equations 858
35-7 Geometric Applications of First-Order Differential Equations 863
35-8 Exponential Growth and Decay 866
35-9 Series RL and RC Circuits 868
35-10 Second-Order Differential Equations 873
35-11 Second-Order Differential Equations with Constant Coefficients and Right Side Zero 874
35-12 Second-Order Differential Equations with Right Side Not Zero 880
35-13 RLC Circuits 885
Chapter 35 Review Problems 892
36 Solving Differential Equations by the Laplace Transform and by Numerical Methods 894
36-1 The Laplace Transform of a Function 894
36-2 Inverse Transforms 901
36-3 Solving Differential Equations by the Laplace Transform 903
36-4 Electrical Applications 907
36-5 Numerical Solution of First-Order Differential Equations 911
36-6 Numerical Solution of Second-Order Differential Equations 914
Chapter 36 Review Problems 917
37 Infinite Series 919
37-1 Convergence and Divergence of Infinite Series 920
37-2 Maclaurin Series 922
37-3 Taylor Series 929
37-4 Operations with Power Series 933
37-5 Fourier Series 936
37-6 Waveform Symmetries 942
37-7 Waveforms with Period of $2 L$ 946
37-8 A Numerical Method for Finding Fourier Series 949
Chapter 37 Review Problems 951
Answers to Selected Problems953
Indexi-1

Numerical Computation

*.. OBJECTIVES

When you have completed this chapter, you should be able to:

- Identify number types and systems, using principles of significant digits and rounding.
- Solve numerical operations using addition, subtraction, multiplication, division, reciprocals, exponents, and roots.
- Follow the correct order of operations to solve multi-operational problems.
- Convert numbers to and from scientific and engineering notation format and solve calculations with them in numerical operations.
- Convert units of measurement using conversion factors.
- Solve equations and formulas through substitution.
- Transform numbers into percent values and calculate percentages.

1-1 The Number Types

In mathematics, you will have trouble understanding the material unless you clearly understand the language (or meaning) of the words that are being used. So, before we start our calculator practice, let's review some definitions in Table 1-1.

TABLE 1-1 Number Types

Number Type	Definition	Example	Explanation
Integers or Signed Numbers	Whole numbers (including zero and negative whole numbers)	$\ldots,-3,-2,-1,0,1,2,3 \ldots$	A positive (+) number is greater than zero (right side of zero on number line).
			A negative (-) number is less than zero (left side of zero on number line).
			It is a good idea when working with signed numbers to write either the (+) or (-) in front of the number to avoid confusion. However, the (+) sign is usually omitted because it is implied.

TABLE 1-1 Number Types (continued)

Number Type	Definition	Example	Explanation
Rational Numbers	Includes integers and all other numbers that can be expressed as the quotient of two integers.	$\frac{1}{2},-\frac{3}{5}, \frac{57}{23},-\frac{98}{99}, 7$	A quotient is a number formed by dividing one number by another number.
Irrational Numbers	Numbers that cannot be expressed as the quotient of two integers.	$\sqrt{2}, \sqrt[3]{5}, \sqrt{7}, \pi$	These are numbers that, written as decimals, are nonterminating and nonrepeating.
Real Numbers	Rational and irrational numbers combined together into one set of numbers.	Any number other than a complex number	Rational and irrational numbers are two separate number types until we put them together into a single set of "real" numbers.
Complex Numbers	Any imaginary number (non-real) or a combination of a real number and an imaginary number	Any imaginary number like $\sqrt{-4}$, and any combination like $-4+\sqrt{-9}$	When we square a real number, even a negative one, we get a positive number. So, taking the square root of a negative number doesn't make sense as a real number, and the result is an imaginary number.

Note that all of the numbers we will work with in Chapter 1 are real numbers. (Complex numbers are covered in Chapter 21.)

FIGURE 1-1

Positional Number Systems

A positional number system is one which the position of a digit determines its value. Our decimal system is positional. Table 1-2 shows the values of positions in a decimal number.

Place Value

Each position in a number has a place value equal to the base of the number system raised to the power of the position number. The place values in the decimal number system, as well as the place names, are shown in Table 1-2.

TABLE 1-2 Decimal Position Values

Number	Power of $\mathbf{1 0}$	Name
10000	10^{4}	Ten Thousands
1000	10^{3}	Thousands
100	10^{2}	Hundreds
10	10^{1}	Tens
1	10^{0}	Ones
0	0	Zero
0.1	10^{-1}	Tenths
0.01	10^{-2}	Hundredths
0.001	10^{-3}	Thousandths
0.0001	10^{-4}	Ten Thousandths

The Opposite of a Number

The opposite of a number n is the number which, when added to n, gives a sum of zero.
\leftrightarrow Example 1: The opposite of 2 is -2 , because $2+(-2)=0$. The opposite of -6 is +6 .
Geometrically, the opposite $-n$ of a number n lies on the opposite side of the zero point of the number line from n, and at an equal distance from the zero point (see Fig. 1-1). The opposite of a number is also called the additive inverse of that number.

Symbols of Equality and Inequality

Several symbols are used to show the relative positions of two quantities a and b on the number line.
$a=b \quad$ means that a equals b and that a and b occupy the same position on the number line.
$a \neq b \quad$ means that a and b are not equal and have different locations on the number line.
$a>b \quad$ means that a is greater than b and a lies to the right of b on the number line.
$a<b \quad$ means that a is less than b and a lies to the left of b on the number line.
$a \approx b$ means that a is approximately equal to b and that a and b are near each other on the number line.

Absolute Value

To get a good understanding of what absolute value means, let's look at a number line:

FIGURE 1-2

The absolute value or magnitude of a number n is defined as its distance from zero on a number line, regardless of its algebraic sign. Therefore, absolute value is never negative.
The absolute value of n is written between bars: $|n|$.

```
COMMON Absolute value bars | | around signed numbers are often confused with
    ERROR
brackets. They do not work like parentheses, brackets, or braces with
negative signs.
Remember: - -4 = -4, not +4, as you would normally simplify -(-4).
```

\leftrightarrow Example 2: Find the value of $-|3-8|$.
Solution:

	Instruction	Looks Like
Step 1	Simplify the expression inside the absolute value bars: $3-8=-5$.	$-\|-5\|$
Step 2	Convert the absolute value bars around $\|-5\|$ to a positive sign, and replace the absolute value bars with parentheses.	$-(+5)$
Step 3	Remove the parentheses and associate the negative sign to the number.	-5

We can see that the opposite of an absolute value is a negative number (or zero).
\leftrightarrow Example 3: Find each absolute value or combination of absolute values.
(a) $|5|=5$
(b) $|-9|=(+9)$ or 9
(c) $|3-7|=|-4|=(+4)$ or 4
(d) $-|-4+7|=-|+3|=-(+3)=-3$
(e) $-|7-21|-|19-13|=-|-14|-|+6|=-(+14)-(+6)=-14-6=-20$

Approximate Numbers

Most of the numbers we deal with in the fields of science and technology are approximate, meaning that their value is somewhat uncertain.

- Example 4:

(a) All numbers that represent measured quantities are approximate. A certain shaft, for example, is approximately 1.75 cm in diameter.
(b) Many fractions can be expressed only approximately in decimal form. Thus, $\frac{2}{3}$ is approximately equal to 0.6667 .
(c) Irrational numbers can be written only approximately in decimal form. The number $\sqrt{3}$ is approximately equal to 1.732 .

Exact Numbers

Exact numbers are those that have no uncertainty.
\leftrightarrow Example 5:
(a) There are exactly 24 hours in a day; no more, no less.
(b) An automobile has exactly four wheels.
(c) Exact numbers are usually integers, but not always. For example, an inch is exactly 25.4 mm , by definition.
(d) On the other hand, not all integers represent exact amounts. For example, a certain town has a population of approximately 3500 people.

Significant Digits

Zeros are frequently used in decimal numbers as "placeholder zeros" in order to determine the location of the decimal point. These zeros are not significant. The remaining numbers (including any zeros in between them) are called significant digits (or sometimes significant figures).
\leftrightarrow Example 6: Table 1-3 outlines some rules to follow when working with significant digits, along with examples of each rule.

TABLE 1-3 Rules for Significant Digits

Rule		Examples
All nonzero digits are significant.	497.3	has 4 significant digits has 3 significant digits
	37.8	18

Accuracy and Precision

The accuracy of a number is written as the number of significant digits in the number. The precision of a number is written as the position of the rightmost significant digit.

- Example 7:

Number	Accurate to:	Precise to:
1.255	4 significant digits	thousandths
23800	3 significant digits	hundreds
0.002	1 significant digit	thousandths
3.600	4 significant digits	thousandths

Rounding

When asked to round your answer after a computation, it is important to follow some basic rules. Rounding down means that when the first discarded digit is less than 5, the last retained digit does not change. Rounding up means that when the first discarded digit is 5 or more, the last retained digit is increased by 1 . There are different rules for rounding when dealing with statistics or accounting, which will not apply in this textbook.

Chapter 1 - Numerical Computation

- Example 8:

Number	Rounded to Two Decimal Places	Rounded to Two Significant Digits
$8.3654 \ldots$	$8.36 \mid, 54 \ldots$	$8.3 \mid 654 \ldots$
8.37 (rounded up)	8.4 (rounded up)	
$8.3456 \ldots$	8.35	8.3
$7.36501 \ldots$	7.37	7.4
$14.364999 \ldots$	14.36	14
$142.764999 \ldots$	142.76	140
$3.141592 \ldots$	3.14	3.1

Note that "..." to the right of a decimal number shows that more digits follow to the right, which are not shown.

- Example 9:

Number	Rounded to Three Decimal Places	Rounded to Three Significant Digits
4.3654	4.365	4.37
4.3656	4.366	4.37
4.365501	4.366	4.37
4.365499	4.365	4.37
1.764999	1.765	1.76
1.764499	1.764	1.76
-8.3499	-8.350	-8.35
-8.3599	-8.360	-8.36

Exercise 1 - The Number Types

Equality and Inequality Signs

Insert the proper equality or inequality sign ($=, \approx,>$, or $<$) between each pair of numbers.

1. 7 and 10
2. 9 and -2
3. -3 and 4
4. -3 and -5
5. $3 / 4$ and 0.75
6. $2 / 3$ and 0.667

Absolute Value

Evaluate the expression.
7. $-|9-23|-|-7+3|$
8. $-|7+45|-|-8-34|$
9. $|12-5+8|-|-6|+|15|$
10. $|13-6+9|-|-8|+|13|$
11. $-|3-9|-|5-11|+|21+4|$
12. $-|4-8|+|-5+11|-|-12-6|$

Significant Digits

State the number of significant digits in each approximate number.
13. 78.3
14. 925.3
15. 9274
16. 29471
17. 4.008
18. 5.0004
19. 9400
20. 36000
21. 20000.
22. $80 \overline{0} 000$
23. 5000.0
24. 60000.0
25. 0.9972
26. 0.87532
27. 1.0000
28. 63.0000

Round each number to two decimal places.
29. 38.468
30. 1.996
31. 96.835001
32. 55.8650
33. 398.372
34. 2.9573
35. 2985.339
36. 278.382

Round each number to one decimal place.
37. 13.98
38. 745.62
39. 5.6501
40. 0.482
41. 398.36
42. 34.927
43. 9839.2857
44. 0.847

Round each number to three significant digits.

Round each number to the nearest hundred.
45. 28583
46. 7550
47. 3845240
48. 274837

1-2 Numerical Operations

A numerical operation can be described as an action or process used to solve a numerical problem. The most basic numerical operations are addition, subtraction, multiplication, and division. Exponents and roots are also numerical operations. Let's review the rules of these operations.

Addition and Subtraction

TABLE 1-4 Addition and Subtraction

Numerical Operation	Rule	Example	Explanation
Addition	Signs	$a+(-b)=a-b$	When adding a negative number $-b$ to a number a, subtract b from a.
	Commutative Law	$a+b=b+a$	You can add numbers in any order.
	Associative Law	$a+(b+c)=(a+b)+c$	You can group numbers to be added in different ways.
	Approximate Numbers	$\begin{aligned} & 32.4 \mathrm{~cm}+5.825 \mathrm{~cm}= \\ & 38.2 \mathrm{~cm} \\ & (\mathrm{not} \approx 38.225 \mathrm{~cm}) \end{aligned}$	When adding approximate numbers, keep as many decimal places in your answer as the number having the fewest decimal places or significant digits in the question. Do not use the \approx symbol.
Subtraction	Signs	$a-(-b)=a+b$	When subtracting a negative number $-b$ from a number a, you add b to a.
	Approximate Numbers	$\begin{aligned} & 79.434 \mathrm{~m}-8.9954 \mathrm{~m}= \\ & 70.439 \mathrm{~m} \\ & (\mathrm{not} \approx 70.4386 \mathrm{~m}) \end{aligned}$	When subtracting approximate numbers, keep as many decimal places in your answer as the number having the fewest decimal places or significant digits in the question. Do not use the \approx symbol.

Adding Signed Numbers

* Example 10:
(a) $7+(-2)=7-2=5$
(b) $-8+(-3)=-8-3=-11$
(c) $9.92 \mathrm{~m}+(-15.36 \mathrm{~m})=9.92 \mathrm{~m}-15.36 \mathrm{~m}=-5.44 \mathrm{~m}$

Subtracting Signed Numbers

- Example 11:
(a) $15-(-3)=15+3=18$
(b) $-5-(-9)=-5+9=4$
(c) $-25.62-(-5.15)=-25.62+5.15=-20.47$

Subtracting Negative Numbers by Calculator

COMMON	Be careful when calculating signed numbers. Calculators often have
ERROR	two separate buttons with the 'negative' sign. The $-\quad$ button is for
the operation of subtraction and the $(-)$ or $+/-$	button on most
calculators is for changing signs on signed numbers.	

Addition and Subtraction of Approximate Numbers

It is a good practice to keep all the digits given throughout the calculation process, until your final answer is needed. Generally, for multiple calculation problems, your calculator will keep all the digits for you if you use the ANS button.

Don't round given numbers or calculations before computing your final calculation. Round the final calculated answer as the problem requires.

- Example 12:

FIGURE 1-3
** Example 13: A sports stadium contains about 3500 people. It starts to rain and 372 people leave. How many are left in the stadium?

Solution: Subtracting, we obtain

$$
3500-372=3128
$$

We round our answer to 3100 people, because the word "about" tells you that 3500 likely has only two significant digits.

Adding and Subtracting Exact and Approximate Numbers

When combining an exact number with an approximate number, the approximate number will limit the accuracy of the result. You will need to round the answer to the number of decimal places found in the approximate number, even if the exact number has fewer decimal places.
\leftrightarrow Example 14: Express 2 h and 35.8 min in minutes.
Solution: We must add an exact number, 120 min , and an approximate number, 35.8 min :

$$
120 \mathrm{~min}+35.8 \mathrm{~min}=155.8 \mathrm{~min}
$$

Since 120 is an exact number, we do not round our answer to the nearest 10 -min interval; instead we retain as many decimal places as in the approximate number. So our answer is 155.8 minutes.

Multiplication and Division

The numbers we multiply to get a product are called factors. For example,

** Example 15: Use a calculator to multiply 183 by 27.
Solution: You should get $183 \times 27=4941$.

TABLE 1-5 Multiplication and Division

Numerical Operation	Rule	Example	Explanation
Multiplication	Signs	$\begin{aligned} & (+a)(+b)=(-a)(-b)=+a b \\ & (+a)(-b)=(-a)(+b)=-a b \\ & (+a)(-b)(+c)(-d)=+a b c d \\ & (-a)(-b)(-c)=-a b c \end{aligned}$	If a and b have the same sign, the product is signed + . If a and b have different signs, the product is signed -. When multiplying a string of numbers together, if an even number of factors is negative, the answer will be positive. If an odd number of factors are negative, the answer will be negative.
	Commutative Law	$a b=b a$	The order of multiplication is not important.
	Associative Law	$a(b c)=(a b) c=(a c) b=a b c$	We can group the numbers to be multiplied any way we want.
	Distributive Law	$a(b+c)=a b+a c$	You can multiply a factor either by adding the group of numbers in the brackets first or by multiplying each factor separately, then adding the products together.
	Approximate Numbers		When multiplying two or more approximate numbers, round the answer to as many significant digits as the factor having the fewest significant digits in the question. Do not use the \approx symbol.
	Exact Numbers	If a certain car tire weighs 32.2 kg when mounted, how much will four of these tires weigh? Solution: $32.2(4)=128.8 \mathrm{~kg}$ Since 4 is an exact number, we keep as many significant digits as contained in 32.2 kg and round our answer to 129 kg .	When using exact numbers in a computation, treat them as if they had more significant digits than any of the approximate numbers in that computation.

